Simulation of Sahel drought in the 20th and 21st centuries.
نویسندگان
چکیده
The Sahel, the transition zone between the Saharan desert and the rainforests of Central Africa and the Guinean Coast, experienced a severe drying trend from the 1950s to the 1980s, from which there has been partial recovery. Continuation of either the drying trend or the more recent ameliorating trend would have far-ranging implications for the economy and ecology of the region. Coupled atmosphere/ocean climate models being used to simulate the future climate have had difficulty simulating Sahel rainfall variations comparable to those observed, thus calling into question their ability to predict future climate change in this region. We describe simulations using a new global climate model that capture several aspects of the 20th century rainfall record in the Sahel. An ensemble mean over eight realizations shows a drying trend in the second half of the century of nearly half of the observed amplitude. Individual realizations can be found that display striking similarity to the observed time series and drying pattern, consistent with the hypothesis that the observations are a superposition of an externally forced trend and internal variability. The drying trend in the ensemble mean of the model simulations is attributable to anthropogenic forcing, partly to an increase in aerosol loading and partly to an increase in greenhouse gases. The model projects a drier Sahel in the future, due primarily to increasing greenhouse gases.
منابع مشابه
Robust Sahel drying in response to late 20th century forcings
[1] The African Sahel experienced severe drying between the 1950s and the 1980s, with partial recovery since. We compare Sahel rainfall in the 20th century, pre-industrial, and increased greenhouse gases (GHG) simulations produced for the Intergovernmental Panel on Climate Change (IPCC). The simulations forced by 20th century concentrations of aerosol and GHG reproduce (i) a global change in SS...
متن کاملSST forcings and Sahel rainfall variability in simulations of the 20th and 21st centuries
The outlook for Sahel precipitation in coupled simulations of the 21 century is very uncertain, with different models disagreeing even on the sign of the trends. Such disagreement is especially surprising in light of the robust response of the same coupled models to the 20 century forcings. We present a statistical analysis of the pre-industrial, 20 century and 21 century A1B scenario simulatio...
متن کاملA unifying view of climate change in the Sahel linking intra-seasonal, interannual and longer time scales
We propose a re-interpretation of the oceanic influence on the climate of the African Sahel that is consistent across observations, 20th century simulations and 21st century projections, and that resolves the uncertainty in projections of precipitation change in this region: continued warming of the global tropical oceans increases the threshold for convection, potentially drying tropical land,...
متن کاملOceanic forcing of the late 20th century Sahel drought
[1] The Sahel region of Africa underwent a pronounced interdecadal drying trend in the latter half of the 20th century. In order to investigate this drying trend, several ensembles of numerical experiments are conducted using a recently developed atmospheric general circulation model (AM2, developed at NOAA’s Geophysical Fluid Dynamics Laboratory). When the model is forced with the time series ...
متن کاملA multimodel study of the twentieth-century simulations of Sahel drought from the 1970s to 1990s
[1] In this paper, we evaluate the performance of 19 coupled general circulation models (CGCMs) in twentieth-century simulations of the Sahel during the 1970s to 1990s. Correlation, regression, and cluster analyses are applied to observations and model outputs including Sahel monthly precipitation, evaporation, soil moisture, and sea surface temperature (SST). We find that only eight CGCMs (hit...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 102 50 شماره
صفحات -
تاریخ انتشار 2005